Several descriptive measures for constructs and elements.
Value
A dataframe containing the following measures is returned invisibly (see psych::describe()
):
item name
item number
number of valid cases
mean standard deviation
trimmed mean (default
.1
)median (standard or interpolated)
mad: median absolute deviation (from the median)
minimum
maximum
skew
kurtosis
standard error
Note
Note that standard deviation and variance are estimations, i.e. including Bessel's correction. For more info
type ?describe
.
Examples
statsConstructs(fbb2003)
#>
#> ####################################
#> Desriptive statistics for constructs
#> ####################################
#>
#> vars n mean sd median trimmed mad min max range
#> (1) clever - not bright 1 8 3.75 2.31 4.0 3.75 2.97 1 7 6
#> (2) disorganiz - organized 2 8 4.00 1.77 4.5 4.00 2.22 2 6 4
#> (3) listens - doesn't he 3 8 3.50 2.14 3.0 3.50 2.22 1 7 6
#> (4) no clear v - clear view 4 8 4.38 1.60 4.0 4.38 1.48 3 7 4
#> (5) understand - no underst 5 8 3.50 1.85 2.5 3.50 0.74 2 6 4
#> (6) ambitious - no ambitio 6 8 4.50 1.51 4.5 4.50 2.22 3 7 4
#> (7) respected - not respec 7 8 3.25 1.75 3.0 3.25 1.48 1 6 5
#> (8) distant - warm 8 8 4.12 1.96 4.0 4.12 1.48 1 7 6
#> (9) rather agg - not aggres 9 8 3.62 1.92 3.0 3.62 2.22 1 7 6
#> skew kurtosis se
#> (1) clever - not bright 0.02 -1.84 0.82
#> (2) disorganiz - organized -0.13 -1.96 0.63
#> (3) listens - doesn't he 0.35 -1.40 0.76
#> (4) no clear v - clear view 0.38 -1.68 0.56
#> (5) understand - no underst 0.41 -1.90 0.65
#> (6) ambitious - no ambitio 0.33 -1.58 0.53
#> (7) respected - not respec 0.23 -1.67 0.62
#> (8) distant - warm -0.05 -1.46 0.69
#> (9) rather agg - not aggres 0.36 -1.25 0.68
statsConstructs(fbb2003, trim = 10)
#>
#> ####################################
#> Desriptive statistics for constructs
#> ####################################
#>
#> vars n mean sd median trimmed mad min max range skew
#> (1) cleve - not b 1 8 3.75 2.31 4.0 3.75 2.97 1 7 6 0.02
#> (2) disor - organ 2 8 4.00 1.77 4.5 4.00 2.22 2 6 4 -0.13
#> (3) liste - doesn 3 8 3.50 2.14 3.0 3.50 2.22 1 7 6 0.35
#> (4) no cl - clear 4 8 4.38 1.60 4.0 4.38 1.48 3 7 4 0.38
#> (5) under - no un 5 8 3.50 1.85 2.5 3.50 0.74 2 6 4 0.41
#> (6) ambit - no am 6 8 4.50 1.51 4.5 4.50 2.22 3 7 4 0.33
#> (7) respe - not r 7 8 3.25 1.75 3.0 3.25 1.48 1 6 5 0.23
#> (8) dista - warm 8 8 4.12 1.96 4.0 4.12 1.48 1 7 6 -0.05
#> (9) rathe - not a 9 8 3.62 1.92 3.0 3.62 2.22 1 7 6 0.36
#> kurtosis se
#> (1) cleve - not b -1.84 0.82
#> (2) disor - organ -1.96 0.63
#> (3) liste - doesn -1.40 0.76
#> (4) no cl - clear -1.68 0.56
#> (5) under - no un -1.90 0.65
#> (6) ambit - no am -1.58 0.53
#> (7) respe - not r -1.67 0.62
#> (8) dista - warm -1.46 0.69
#> (9) rathe - not a -1.25 0.68
statsConstructs(fbb2003, trim = 10, index = FALSE)
#>
#> ####################################
#> Desriptive statistics for constructs
#> ####################################
#>
#> vars n mean sd median trimmed mad min max range skew kurtosis
#> cleve - not b 1 8 3.75 2.31 4.0 3.75 2.97 1 7 6 0.02 -1.84
#> disor - organ 2 8 4.00 1.77 4.5 4.00 2.22 2 6 4 -0.13 -1.96
#> liste - doesn 3 8 3.50 2.14 3.0 3.50 2.22 1 7 6 0.35 -1.40
#> no cl - clear 4 8 4.38 1.60 4.0 4.38 1.48 3 7 4 0.38 -1.68
#> under - no un 5 8 3.50 1.85 2.5 3.50 0.74 2 6 4 0.41 -1.90
#> ambit - no am 6 8 4.50 1.51 4.5 4.50 2.22 3 7 4 0.33 -1.58
#> respe - not r 7 8 3.25 1.75 3.0 3.25 1.48 1 6 5 0.23 -1.67
#> dista - warm 8 8 4.12 1.96 4.0 4.12 1.48 1 7 6 -0.05 -1.46
#> rathe - not a 9 8 3.62 1.92 3.0 3.62 2.22 1 7 6 0.36 -1.25
#> se
#> cleve - not b 0.82
#> disor - organ 0.63
#> liste - doesn 0.76
#> no cl - clear 0.56
#> under - no un 0.65
#> ambit - no am 0.53
#> respe - not r 0.62
#> dista - warm 0.69
#> rathe - not a 0.68
statsElements(fbb2003)
#>
#> ##################################
#> Desriptive statistics for elements
#> ##################################
#>
#> vars n mean sd median trimmed mad min max range
#> (1) self 1 9 3.44 1.81 3 3.44 1.48 1 6 5
#> (2) my father 2 9 3.00 1.87 3 3.00 1.48 1 6 5
#> (3) an old flame 3 9 4.89 1.45 5 4.89 1.48 3 7 4
#> (4) an ethical person 4 9 3.11 0.93 3 3.11 0.00 2 5 3
#> (5) my mother 5 9 4.11 1.69 5 4.11 2.97 2 7 5
#> (6) a rejected teacher 6 9 4.33 2.35 5 4.33 2.97 1 7 6
#> (7) as I would love to b 7 9 3.44 2.35 3 3.44 2.97 1 7 6
#> (8) a pitied person 8 9 4.44 1.42 5 4.44 1.48 2 7 5
#> skew kurtosis se
#> (1) self 0.30 -1.60 0.60
#> (2) my father 0.61 -1.22 0.62
#> (3) an old flame -0.05 -1.72 0.48
#> (4) an ethical person 0.65 -0.54 0.31
#> (5) my mother 0.12 -1.44 0.56
#> (6) a rejected teacher -0.15 -1.89 0.78
#> (7) as I would love to b 0.19 -1.82 0.78
#> (8) a pitied person -0.02 -0.75 0.47
statsElements(fbb2003, trim = 10)
#>
#> ##################################
#> Desriptive statistics for elements
#> ##################################
#>
#> vars n mean sd median trimmed mad min max range skew
#> (1) self 1 9 3.44 1.81 3 3.44 1.48 1 6 5 0.30
#> (2) my father 2 9 3.00 1.87 3 3.00 1.48 1 6 5 0.61
#> (3) an old fla 3 9 4.89 1.45 5 4.89 1.48 3 7 4 -0.05
#> (4) an ethical 4 9 3.11 0.93 3 3.11 0.00 2 5 3 0.65
#> (5) my mother 5 9 4.11 1.69 5 4.11 2.97 2 7 5 0.12
#> (6) a rejected 6 9 4.33 2.35 5 4.33 2.97 1 7 6 -0.15
#> (7) as I would 7 9 3.44 2.35 3 3.44 2.97 1 7 6 0.19
#> (8) a pitied p 8 9 4.44 1.42 5 4.44 1.48 2 7 5 -0.02
#> kurtosis se
#> (1) self -1.60 0.60
#> (2) my father -1.22 0.62
#> (3) an old fla -1.72 0.48
#> (4) an ethical -0.54 0.31
#> (5) my mother -1.44 0.56
#> (6) a rejected -1.89 0.78
#> (7) as I would -1.82 0.78
#> (8) a pitied p -0.75 0.47
statsElements(fbb2003, trim = 10, index = FALSE)
#>
#> ##################################
#> Desriptive statistics for elements
#> ##################################
#>
#> vars n mean sd median trimmed mad min max range skew kurtosis
#> self 1 9 3.44 1.81 3 3.44 1.48 1 6 5 0.30 -1.60
#> my father 2 9 3.00 1.87 3 3.00 1.48 1 6 5 0.61 -1.22
#> an old fla 3 9 4.89 1.45 5 4.89 1.48 3 7 4 -0.05 -1.72
#> an ethical 4 9 3.11 0.93 3 3.11 0.00 2 5 3 0.65 -0.54
#> my mother 5 9 4.11 1.69 5 4.11 2.97 2 7 5 0.12 -1.44
#> a rejected 6 9 4.33 2.35 5 4.33 2.97 1 7 6 -0.15 -1.89
#> as I would 7 9 3.44 2.35 3 3.44 2.97 1 7 6 0.19 -1.82
#> a pitied p 8 9 4.44 1.42 5 4.44 1.48 2 7 5 -0.02 -0.75
#> se
#> self 0.60
#> my father 0.62
#> an old fla 0.48
#> an ethical 0.31
#> my mother 0.56
#> a rejected 0.78
#> as I would 0.78
#> a pitied p 0.47
# save the access the results
d <- statsElements(fbb2003)
d
#>
#> ##################################
#> Desriptive statistics for elements
#> ##################################
#>
#> vars n mean sd median trimmed mad min max range
#> (1) self 1 9 3.44 1.81 3 3.44 1.48 1 6 5
#> (2) my father 2 9 3.00 1.87 3 3.00 1.48 1 6 5
#> (3) an old flame 3 9 4.89 1.45 5 4.89 1.48 3 7 4
#> (4) an ethical person 4 9 3.11 0.93 3 3.11 0.00 2 5 3
#> (5) my mother 5 9 4.11 1.69 5 4.11 2.97 2 7 5
#> (6) a rejected teacher 6 9 4.33 2.35 5 4.33 2.97 1 7 6
#> (7) as I would love to b 7 9 3.44 2.35 3 3.44 2.97 1 7 6
#> (8) a pitied person 8 9 4.44 1.42 5 4.44 1.48 2 7 5
#> skew kurtosis se
#> (1) self 0.30 -1.60 0.60
#> (2) my father 0.61 -1.22 0.62
#> (3) an old flame -0.05 -1.72 0.48
#> (4) an ethical person 0.65 -0.54 0.31
#> (5) my mother 0.12 -1.44 0.56
#> (6) a rejected teacher -0.15 -1.89 0.78
#> (7) as I would love to b 0.19 -1.82 0.78
#> (8) a pitied person -0.02 -0.75 0.47
d["mean"]
#>
#> ##################################
#> Desriptive statistics for elements
#> ##################################
#>
#> mean
#> (1) self 3.44
#> (2) my father 3.00
#> (3) an old flame 4.89
#> (4) an ethical person 3.11
#> (5) my mother 4.11
#> (6) a rejected teacher 4.33
#> (7) as I would love to b 3.44
#> (8) a pitied person 4.44
d[2, "mean"] # mean rating of 2nd element
#> [1] 3
d <- statsConstructs(fbb2003)
d
#>
#> ####################################
#> Desriptive statistics for constructs
#> ####################################
#>
#> vars n mean sd median trimmed mad min max range
#> (1) clever - not bright 1 8 3.75 2.31 4.0 3.75 2.97 1 7 6
#> (2) disorganiz - organized 2 8 4.00 1.77 4.5 4.00 2.22 2 6 4
#> (3) listens - doesn't he 3 8 3.50 2.14 3.0 3.50 2.22 1 7 6
#> (4) no clear v - clear view 4 8 4.38 1.60 4.0 4.38 1.48 3 7 4
#> (5) understand - no underst 5 8 3.50 1.85 2.5 3.50 0.74 2 6 4
#> (6) ambitious - no ambitio 6 8 4.50 1.51 4.5 4.50 2.22 3 7 4
#> (7) respected - not respec 7 8 3.25 1.75 3.0 3.25 1.48 1 6 5
#> (8) distant - warm 8 8 4.12 1.96 4.0 4.12 1.48 1 7 6
#> (9) rather agg - not aggres 9 8 3.62 1.92 3.0 3.62 2.22 1 7 6
#> skew kurtosis se
#> (1) clever - not bright 0.02 -1.84 0.82
#> (2) disorganiz - organized -0.13 -1.96 0.63
#> (3) listens - doesn't he 0.35 -1.40 0.76
#> (4) no clear v - clear view 0.38 -1.68 0.56
#> (5) understand - no underst 0.41 -1.90 0.65
#> (6) ambitious - no ambitio 0.33 -1.58 0.53
#> (7) respected - not respec 0.23 -1.67 0.62
#> (8) distant - warm -0.05 -1.46 0.69
#> (9) rather agg - not aggres 0.36 -1.25 0.68
d["sd"]
#>
#> ####################################
#> Desriptive statistics for constructs
#> ####################################
#>
#> sd
#> (1) clever - not bright 2.31
#> (2) disorganiz - organized 1.77
#> (3) listens - doesn't he 2.14
#> (4) no clear v - clear view 1.60
#> (5) understand - no underst 1.85
#> (6) ambitious - no ambitio 1.51
#> (7) respected - not respec 1.75
#> (8) distant - warm 1.96
#> (9) rather agg - not aggres 1.92
d[1, "sd"] # sd of ratings on first construct
#> [1] 2.31455