Skip to contents

The index builds on the number of rating matches between pairs of constructs. It is the relation between the total number of matches and the possible number of matches.

Usage

indexBieri(x, deviation = 0)

Arguments

x

A repgrid object.

deviation

Maximal difference between ratings to be considered a match (default 0 = identical scores for a match).

Value

List of class indexBieri:

  • grid: The grid used to calculate the index

  • deviation The deviation parameter.

  • matches_max Maximum possible number of matches across constructs.

  • matches Total number of matches across constructs.

  • constructs: Matrix with no. of matches for constructs.

  • bieri: Bieri index (= matches / matches_max)

Details

CAVEAT: The Bieri index will change when constructs are reversed.

Examples

m <- indexBieri(boeker)

# several output options
print(m)
#> 
#> ######################
#> BIERI COMPLEXITY INDEX
#> ######################
#> 
#> Bieri: 0.24
#> 
#> Maximal rating difference to count as match:  0
#> Total no. of matches between constructs:  327
#> Maximum possible no. of matches between constructs:  1365
print(m, output = "IC")  # construct matches
#> 
#> ######################
#> BIERI COMPLEXITY INDEX
#> ######################
#> 
#> Bieri: 0.24
#> 
#> Maximal rating difference to count as match:  0
#> Total no. of matches between constructs:  327
#> Maximum possible no. of matches between constructs:  1365
#> 
#> MATCHES BETWEEN CONSTRUCTS
#> 
#>                                            1  2  3  4  5  6  7  8  9 10 11 12
#> 1  balanced - get along with conflicts  1     2  3  2  6  5  4  4  6  1  4  5
#> 2                  isolated - sociable  2        3  2  4  3  2  3  2  4  1  5
#> 3        closely integrated - excluded  3           4  3  0  5  5  2  2  5  5
#> 4                 discursive - passive  4              6  4  4  4  6  1  3  3
#> 5            open minded - indifferent  5                 4  5  4  7  2  4  7
#> 6               dreamy - dispassionate  6                    4  6  8  4  2  4
#> 7     practically oriented - depressed  7                       3  8  1  5  4
#> 8                    playful - serious  8                          3  3  2  6
#> 9            socially minded - selfish  9                             0  2  6
#> 10              quarrelsome - peaceful 10                                3  3
#> 11                artistic - technical 11                                   3
#> 12              scientific - emotional 12                                    
#> 13               introvert - extrovert 13                                    
#> 14          wanderlust - home oriented 14                                    
#>    13 14
#> 1   4  6
#> 2   6  2
#> 3   4  2
#> 4   3  2
#> 5   4  3
#> 6   2  4
#> 7   2  3
#> 8   8  3
#> 9   2  5
#> 10  3  0
#> 11  0  3
#> 12  4  3
#> 13     3
#> 14      

# extract the matrix of matches
m$constructs
#>       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
#>  [1,]   NA    2    3    2    6    5    4    4    6     1     4     5     4
#>  [2,]    2   NA    3    2    4    3    2    3    2     4     1     5     6
#>  [3,]    3    3   NA    4    3    0    5    5    2     2     5     5     4
#>  [4,]    2    2    4   NA    6    4    4    4    6     1     3     3     3
#>  [5,]    6    4    3    6   NA    4    5    4    7     2     4     7     4
#>  [6,]    5    3    0    4    4   NA    4    6    8     4     2     4     2
#>  [7,]    4    2    5    4    5    4   NA    3    8     1     5     4     2
#>  [8,]    4    3    5    4    4    6    3   NA    3     3     2     6     8
#>  [9,]    6    2    2    6    7    8    8    3   NA     0     2     6     2
#> [10,]    1    4    2    1    2    4    1    3    0    NA     3     3     3
#> [11,]    4    1    5    3    4    2    5    2    2     3    NA     3     0
#> [12,]    5    5    5    3    7    4    4    6    6     3     3    NA     4
#> [13,]    4    6    4    3    4    2    2    8    2     3     0     4    NA
#> [14,]    6    2    2    2    3    4    3    3    5     0     3     3     3
#>       [,14]
#>  [1,]     6
#>  [2,]     2
#>  [3,]     2
#>  [4,]     2
#>  [5,]     3
#>  [6,]     4
#>  [7,]     3
#>  [8,]     3
#>  [9,]     5
#> [10,]     0
#> [11,]     3
#> [12,]     3
#> [13,]     3
#> [14,]    NA

# CAVEAT: Bieri's index changes when constructs are reversed
nr <- nrow(boeker)
l <- replicate(1000, swapPoles(boeker, sample(nr, sample(nr, 1))))
bieri <- sapply(l, function(x) indexBieri(x)$bieri)
hist(bieri, breaks = 50)
abline(v = mean(bieri), col = "red", lty = 2)